Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Large-amplitude electrostatic fluctuations are routinely observed by spacecraft upon traversal of collisionless shocks in the heliosphere. Kinetic simulations of shocks have struggled to reproduce the amplitude of such fluctuations, complicating efforts to un- derstand their influence on energy dissipation and shock structure. In this paper, 1D particle-in-cell simulations with realistic proton-to-electron mass ratio are used to show that in cases with upstream electron temperature Te exceeding the ion temperature Ti, the magnitude of the fluctuations increases with the electron plasma-to-cyclotron frequency ratio ωpe/Ωce, reaching realistic values at ωpe/Ωce ≳ 30. The large-amplitude fluctuations in the simulations are shown to be associated with electrostatic solitary structures, such as ion phase-space holes. In the cases where upstream temperature ratio is reversed, the magnitude of the fluctuations remains small.more » « lessFree, publicly-accessible full text available October 8, 2026
- 
            Abstract On 24 April 2023, an ICME reached Earth's orbit. The solar wind density dropped to 0.3 amu/cc while the IMF strength was about 25 nT. As a result, the solar wind flow transitions to a sub‐Alfvénic state with an Alfvén Mach number of 0.4. We carry out global magnetohydrodynamic simulations to investigate the responses of Earth's magnetosphere to the ICME ejecta. The results show the formation of Alfvén wings as the solar wind becomes sub‐Alfvénic. Furthermore, the sub‐Alfvénic period was characterized by the dominance of the IMF component, causing the Alfvén wings to extend toward the dawn and dusk flanks. We investigate the global magnetospheric convection of this sub‐ Alfvénic case and find that the overall convection is mediated by the Alfvén wings, while the magnetic field convection in inner magnetosphere is similar to the super‐Alfvénic case.more » « lessFree, publicly-accessible full text available March 28, 2026
- 
            Impact of the Out‐Of‐Plane Flow Shear on Magnetic Reconnection at the Flanks of Earth's MagnetopauseAbstract Magnetic reconnection changes the magnetic field topology and facilitates the energy and particle exchange at magnetospheric boundaries such as the Earth's magnetopause. The flow shear perpendicular to the reconnecting plane prevails at the flank magnetopause under southward interplanetary magnetic field conditions. However, the effect of the out‐of‐plane flow shear on asymmetric reconnection is an open question. In this study, we utilize kinetic simulations to investigate the impact of the out‐of‐plane flow shear on asymmetric reconnection. By systematically varying the flow shear strength, we analyze the flow shear effects on the reconnection rate, the diffusion region structure, and the energy conversion rate. We find that the reconnection rate increases with the upstream out‐of‐plane flow shear, and for the same upstream conditions, it is higher at the dusk side than at the dawn side. The diffusion region is squeezed in the outflow direction due to magnetic pressure which is proportional to the square of the Alfvén Mach number of the shear flow. The out‐of‐plane flow shear increases the energy conversion rate , and for the same upstream conditions, the magnitude of is larger at the dusk side than at the dawn side. This study reveals that out‐of‐plane flow shear not only enhances the reconnection rate but also significantly boosts energy conversion, with more pronounced effects on the dusk‐side flank than on the dawn‐side flank. These insights pave the way for better understanding the solar wind‐magnetosphere interactions.more » « less
- 
            Introduction: Magnetopause reconnection is known to impact the dayside ionosphere by driving fast ionospheric flows, auroral transients, and high-density plasma structures named polar cap patches. However, most of the observed reconnection impact is limited to one hemisphere, and a question arises as to how symmetric the impact is between hemispheres. Methods: We address the question using interhemispheric observations of poleward moving radar auroral forms (PMRAFs), which are a “fossil” signature of magnetopause reconnection, during a geomagnetic storm. We are particularly interested in the temporal repetition and spatial structure of PMRAFs, which are directly affected by the temporal and spatial variation of magnetopause reconnection. PMRAFs are detected and traced using SuperDARN complemented by DMSP, Swarm, and GPS TEC measurements. Results: The results show that PMRAFs occurred repetitively on time scales of about 10 min. They were one-to-one related to pulsed ionospheric flows, and were collocated with polar cap patches embedded in a Tongue of Ionization. The temporal repetition of PMRAFs exhibited a remarkably high degree of correlation between hemispheres, indicating that PMRAFs were produced at a similar rate, or even in close synchronization, in the two hemispheres. However, the spatial structure exhibited significant hemispherical asymmetry. In the Northern Hemisphere, PMRAFs/patches had a dawn-dusk elongated cigar shape that extended >1,000 km, at times reaching >2,000 km, whereas in the Southern Hemisphere, PMRAFs/patches were 2–3 times shorter. Conclusion: The interesting symmetry and asymmetry of PMRAFs suggests that both magnetopause reconnection and local ionospheric conditions play important roles in determining the degree of symmetry of PMRAFs/patches.more » « less
- 
            Abstract We report Magnetospheric Multiscale observations of oxygen ions (O+) during a coronal mass ejection (CME) in April 2023 when the solar wind was sub‐Alfvénic and Alfvén wings formed. For the first time, O+ characteristics are studied at the contact region between the unshocked solar wind and the magnetosphere. The O+ ions show energies between 100s eV and ∼30 keV. The possible sources are the ring current, the warm plasma cloak, and the ionosphere. The O+ ions exhibit bi‐directional streaming along newly‐formed closed field lines (CFLs), and dominantly anti‐parallel on earlier‐formed CFLs. Escaping O+ ions in the unshocked solar wind are observed. During the recovery phase, the O+ pitch‐angle distribution associated with flux tubes shows dispersion, indicating potential loss to the solar wind. Our results show escaping as well as trapped O+ ions in the region where a magnetic cloud, an Alfvén wing, and magnetospheric field lines are mixed.more » « less
- 
            Abstract We analyze a magnetotail reconnection onset event on 3 July 2017 that was observed under otherwise quiescent magnetospheric conditions by a fortuitous conjunction of six space and ground‐based observatories. The study investigates the large‐scale coupling of the solar wind–magnetosphere system that precipitated the onset of the magnetotail reconnection, focusing on the processes that thinned and stretched the cross‐tail current layer in the absence of significant flux loading during a 2‐hr‐long preconditioning phase. It is demonstrated with data in the (a) upstream solar wind, (b) at the low‐latitude magnetopause, (c) in the high‐latitude polar cap, and (d) in the magnetotail that the typical picture of solar wind‐driven current sheet thinning via flux loading does not appear relevant for this particular event. We find that the current sheet thinning was, instead, initiated by a transient solar wind pressure pulse and that the current sheet thinning continued even as the magnetotail and solar wind pressures decreased. We suggest that field line curvature‐induced scattering (observed by magnetospheric multiscale) and precipitation (observed by Defense Meteorological Satellite Program) of high‐energy thermal protons may have evacuated plasma sheet thermal energy, which may require a thinning of the plasma sheet to preserve pressure equilibrium with the solar wind.more » « less
- 
            We perform a statistical study of 3-s ultra-low frequency (ULF) waves using Magnetospheric Multiscale observations in the Earth's foreshock region. The average phase velocity in the plasma rest frame is determined to be anti-sunward, and the intrinsic polarization is right-handed. We further examine the linear instability conditions based on the drift-bi-Maxwellian distribution functions according to the observed plasma conditions. The resulting instability is a solution to the common dispersion equation of the ion/ion right-hand non-resonant and left-hand resonant instabilities. The predicted wave propagation is also predominantly anti-sunward. The cyclotron resonant conditions of the solar wind and backstreaming beam ions are evaluated, and we find that, in some cases, the anti-sunward propagating waves can be resonant with beam ions, which was overlooked in previous studies. The study suggests that the dispersion equation provides the 3-s ULF waves a fundamental explanation that unifies a rich variety of resonant conditions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
